Omission of serial arterial blood sampling in neuroreceptor imaging with independent component analysis.
نویسندگان
چکیده
We have previously proposed a statistical method for extracting a plasma time-activity curve (pTAC) from dynamic PET images, named EPICA, for kinetic analysis of cerebral glucose metabolism. We assumed that the dynamic PET images consist of a blood-related component and a tissue-related component which are spatially independent in a statistical sense. The aim of this study is to investigate the utility of EPICA in imaging total distribution volume (DVt) and binding potential (BP) with Logan plots in a neuroreceptor mapping study. We applied EPICA to dynamic [(11)C]MPDX PET images in 25 subjects, including healthy subjects and patients with brain diseases, and validated the estimated pTACs. [11C]MPDX is a newly developed radiopharmaceutical for mapping cerebral adenosine A1 receptors. EPICA successfully extracted pTAC for all 25 subjects. Parametric images of DVts were estimated by applying Logan plots with the EPICA-estimated pTAC and then used to define a reference region. The BPs estimated using EPICA were evaluated in 18 subjects by ROI-based comparison with those obtained using the nonlinear least squares method (NLSM). The calculated BPs were identical to the estimates using NLSM in each subject. We conclude that EPICA is a promising technique that generates parametric images of DVt and BP in neuroreceptor mapping without requiring arterial blood sampling.
منابع مشابه
An introduction to PET and SPECT neuroreceptor quantification models.
PET and SPECT using appropriate radioligands allow imaging of certain critical components of neurotransmission such as presynaptic transporters and postsynaptic receptors in living human brains. PET and SPECT data are commonly analyzed by applying tracer kinetic models. These modeling approaches assume a compartmental system and derive the outcome measure called the binding potential, which ref...
متن کاملمقایسه اندازهگیری اشباع اکسیژن خون شریانی با پالس اکسیمتری و نمونه خون شریانی در بیماران بخش مراقبتهای ویژه قلبی
Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation) in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2) during clinical routine in such patients, and to examine the eff...
متن کاملNoninvasive Extraction of Input Function from Carotid Artery in H2 O Dynamic Brain Positron Emission Tomography Using Independent Component Analysis
For the absolute quantification of regional cerebral blood flow (rCBF) by means of H2 15 O positron emission tomography (PET) and kinetic modeling, arterial input function should be determined accurately. Even if arterial blood sampling, as an input function, provides an accurate time-activity curve (TAC), it is invasive and delay from carotid artery to radial artery should be corrected. Since ...
متن کاملCharacterization of the image-derived carotid artery input function using independent component analysis
We previously developed a noninvasive technique for the quantification of fluorodeoxyglucose (FDG) positron emission tomography (PET) images using an image-derived input function obtained from a manually drawn carotid artery region. Here, we investigate the use of independent component analysis (ICA) for more objective identification of the carotid artery and surrounding tissue regions. Using F...
متن کاملCharacterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images Image-derived input function by ICA for FDG-PET
We previously developed a noninvasive technique for the quantification of fluorodeoxyglucose (FDG) positron emission tomography (PET) images using an imagederived input function obtained from a manually drawn carotid artery region. Here, we investigate the use of independent component analysis (ICA) for more objective identification of the carotid artery and surrounding tissue regions. Using FD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2005